Accurate molecular dynamics and nuclear quantum effects at low cost by multiple steps in real and imaginary time: Using density functional theory to accelerate wavefunction methods.
نویسندگان
چکیده
The development and implementation of increasingly accurate methods for electronic structure calculations mean that, for many atomistic simulation problems, treating light nuclei as classical particles is now one of the most serious approximations. Even though recent developments have significantly reduced the overhead for modeling the quantum nature of the nuclei, the cost is still prohibitive when combined with advanced electronic structure methods. Here we present how multiple time step integrators can be combined with ring-polymer contraction techniques (effectively, multiple time stepping in imaginary time) to reduce virtually to zero the overhead of modelling nuclear quantum effects, while describing inter-atomic forces at high levels of electronic structure theory. This is demonstrated for a combination of MP2 and semi-local DFT applied to the Zundel cation. The approach can be seamlessly combined with other methods to reduce the computational cost of path integral calculations, such as high-order factorizations of the Boltzmann operator or generalized Langevin equation thermostats.
منابع مشابه
Ab initio molecular dynamics with nuclear quantum effects at classical cost: Ring polymer contraction for density functional theory.
Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magni...
متن کاملA DFT and Molecular Dynamics Study on Inhibitory Action of Three Amine Derivatives on Corrosion of Carbon Steel
Inhibition efficiencies of three amine derivatives (Diethylenetriamine (I), Triethylenetetramine (II), and Pentaethylenehexamine (III)) have been studied on corrosion of carbon steel using density functional theory (DFT) method in gas phase. Quantum chemical parameters such as EHOMO (highest occupied molecular orbital energy), ELUMO (lowest unoccupied molecular orbital energy), hardness (η), po...
متن کاملInvestigation of Different Solvents and Temperatures Effects on (3,7) Single-Walled Carbon Nanotubes: DFT Study
In this research, we have studied the structural propenies of water. methanol and ethanol surrounding snidewalledcarbon nanotube (SWCNT) and mixed of them either and we have investigated the solvent effects onthe relative energies and dipole moment values by ming molecular dynamics simulation. We used differentforce field it, deterrnaned energy and other type of geometrical parameters, on the p...
متن کاملPrediction of accurate pKa values of some α-substituted carboxylic acids with low cost of computational methods
The acidity constants (pKa) of thirty four (34) ;-substituted carboxylic acids in aqueous solution havebeen calculated using conductor-like polarizable continuum (C-PCM) solvation model. The gasphaseenergies at the Density Functional Theory (DFT-MPW1PW91) and solvation energies atHartree Fock (HF) are combined to estimate the pKa values which are very close to the experimentalvalues where, and ...
متن کاملExtending the Reach of Accurate Wavefunction Methods
Delcey, M. G. 2014. Extending the Reach of Accurate Wavefunction Methods. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1228. 75 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9168-0. Multiconfigurational quantum chemistry methods, and especially the multiconfigurational selfconsistent field (MCSCF) and multireference perturbat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 144 5 شماره
صفحات -
تاریخ انتشار 2016